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ABSTRACT 

Thermal batteries are activated by the ignition of heat pellets. If the heat pellets are not 

sensitive enough to the ignition stimulus, the thermal battery will not activate, resulting in a dud. 

Thus, to assure reliable thermal batteries, it is important to demonstrate that the pellets have 

satisfactory ignition sensitivity by testing a number of specimens. 

There are a number of statistical methods for evaluating the sensitivity of a device to some 

stimulus. Generally, these methods are applicable to the situation in which a single test is 

destructive to the specimen being tested, independent of the outcome of the test. In the case of 

thermal battery heat pellets, however, tests that result in a nonresponse do not totally degrade the 

specimen. This peculiarity provides opportunities to efficiently evaluate the ignition sensitivity of 

heat pellets. In this paper, a simple strategy for evaluating heat pellet ignition sensitivity 

(including experimental design and data analysis) is described. The relatively good asymptotic and 

small-sample efficiencies of this strategy are demonstrated. 

KEY WORDS: Censored Data; Experimental Design; Maximum Likelihood Estimation; Sensitivity 

Testing. 
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Sensitivity testing 

stimulus level applied to a 

1. INTRODUCTION 

involves the characterization of a response curve that relates the 

specimen with the probability of a response. This situation arises in 

man y fields of research from biological assays (e.g., see Finney 1978) to the testing of explosives 

(e.g., see Dixon and Mood 1948). The outcome of an experiment on an individual specimen is 

dichotomous (e.g., response/nonresponse, explode/not explode, die/survive). A number of methods 

for obtaining and analyzing sensitivity test data have appeared in the statistical literature (e.g., see 

Dixon and Mood 1948, Robbins and Monro 1951, and Wu 1985). 

A response curve is estimated by conducting a series of experiments in which the stimulus 

level is varied. The recorded outcome of each experiment is whether or not a response to the 

stimulus occurred. Often, the 50th percentile of the response curve is of interest (in biological 

studies involving the dichotomous outcome, die/survive, this percentile is referred to as the LD50). 

Usually, experiments are performed sequentially so that results from previous experiments can be 

used to select the stimulus level associated with the current experiment. The experimental results 

can be compactly summarized by (S1, 11), (S2, 12), . . . . (Sn, In), where 

Si is the stimulus level applied to the specimen used in the ith experiment, and 

Ii is an indicator of the outcome of the ith experiment. 

Ii = 1 (0) if the specimen used in the ith experiment did (did not) respond to Si. 

Experimental design in this situation, consists of choosing n (the number of experiments to 

run), S1 (the stimulus applied to the first specimen), and the logic used to select S2, S3, . . . . Sn. In 

the up-and-down (or Bruceton) method, proposed by Dixon and Mood (1948) the logic used to 

select stimulus levels is, 

Si+l=Si+d if Ii=O 

Si –A if Ii = 1, where 

A is a fixed step size of the stimulus. This method can be effective if the purpose is to estimate 

the 50th percentile of the response curve. For small to moderate values of n, the performance of 

this method depends on good guesses for S1 and A. Other methods of selecting the Sij such as the 

stochastic approximation method (Robbins and Monro 1951), are more general and can be used to 

estimate arbitrary percentiles of the response curve. In general, an experimental strategy should be 

selected based on the objectives of the study, previous data, and a conceptual model. In addition, 

a strategy should be tailored to take advantage of the uniqueness of the specific application as well 

as to facilitate the resulting data analysis. 



1.1 Thermal Batteries 

A thermal battery consists of a number of electrochemical cells stacked together in series 

to achieve the desired output voltage. A cross-sectional representation of a typical thermal cell is 

shown in Figure 1. Each cell assembly consists of an anode, electrolyte mixed with a metal-oxide 

binder, cathode, and pyrotechnic mixture (Fe/KC104), all in pellet (or disk) form in the solid 

state. A thermal battery can remain dormant (and preserved) for many years and will not deliver 

its power until its internal temperature is elevated above the melting point of the electrolyte. 

Temperature elevation is achieved by the ignition of the Fe/KC104 heat pellets. Thermal batteries 

are used in a number of military and space applications when there is a need for a relatively long 

dormant lifetime with a large power requirement and a short activation time (see Vincent et al. 

1984). 

(-) 
r [ 

I Anode I 
Separator* (EB) 

(+) 
Figure 1- Cross-sectional Representation of a Pelletized Thermal Cell 
Separator contains electrolyte (E) immobilized with MgO binder (B) 

The performance of thermal batteries can be affected by the ignition sensitivity of the heat 

pellets. Ignition sensitivity is determined by the energy per unit area required to ignite a heat 

pellet and is assumed to be a homogeneous quantity throughout a pellet. If the heat pellets are not 

sensitive enough to the energy stimulus, the thermal battery will not activate, resulting in a dud. 

Thus, to assure reliable thermal batteries, it is important to demonstrate that the pellets have 

satisfactory ignition sensitivity. This is generally accomplished through a lot sampling program in 

which a number of pellets are randomly selected and tested. The response curve (or selected 

percentiles) can be estimated for the lot based on the experimental results and subsequent analysis. 

Individual heat pellets are tested for ignition sensitivity by using a laser (see Figure 2). 

Coherent light from the laser, originally at an energy intensity of EO, is directed through a series of 

up to four absorbing filters where the energy intensity is attenuated to a level E. This energy is 

directed onto a spot within one of six sectors on the pellet (see Figure 3). If the energy density is 

sufficient, the pellet ignites rapidly and is destroyed. Otherwise, the spot is charred, but the pellet 
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does not ignite. Once charred, the

tested. Therefore, tests that result

specimen. This peculiarity provides

sector cannot be retested. Other sectors, however, can be

in a nonresponse do not degrade the other sectors of the

the opportunity to evaluate the ignition sensitivity of heat

pellets in an efficient manner. Thus, the purpose of this paper is to put forth a method for

experimental design and data analysis for this situation.

The remainder of this paper is organized as follows. Section 2 provides more details

associated with battery pellet testing; including objectives, procedures, and modeling. In Section 3,

a sequential testing strategy is proposed. Section 4 illustrates how the proposed procedure can be

represented as a Markov Chain. This representation is utilized in the derivation of the asymptotic

performance of the proposed method, which is presented in Section 5. A small Monte Carlo study

is used to illustrate the small-sample performance of the proposed method in Section 6. A short

conclusion follows.

E1-qll=l
Laser Filters Pellet

Figure 2- Attenuation of Laser Source Through Filters

Figure 3- Plan View of Heat Pellet (Disk)
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2. RESPONSE MODEL AND TESTING

The threshold energy needed to ignite a pellet varies somewhat from pellet to pellet and lot

to lot. Analyses of historical data suggest the probit model,

<
Pro Ignition I Stimulus = S

}=<%
provides a good approximation to the distribution of threshold energies within a lot. Earlier test

data from many production lots indicate that p and a, which are the parameters of interest, are

likely to be in the following regions; .4 to .9 Joules for p, and .05 to .2 Joules for u. Production

engineers are interested in estimating the 50th and 90th percentiles of the threshold energy

distribution for each lot at relatively small expense. It is not necessary to resolve p outside the

range of interest as pellets with ignition sensitivities outside that range are unacceptable. The

production engineers need simple methods for both the design of the sensitivity experiment and the

subsequent analysis.

In addition to using the sensitivity testing for lot acceptance, production personnel want

to use control charts of the estimates of p and u to help monitor the production process. Also, the

parameter estimates can be used as response variables in experiments to gauge the effect on

ignition sensitivity of the three major process factors during the fabrication of heat pellets:

composition, particle size of Fe, and compaction pressure. Briefly, the process consists of pressing a

mixture of iron and potassium perchlorate powders into pellets (disks) to a specified density for a

given diameter, thickness, and mass.

During testing, a technician selects up to four filters (out of a set of seven filters) to place

between the laser source and the target. The laser is then fired. The energy delivered to the spot

on the pellet is E = (E. + 6f)k ~ ~ Pkt where 6f is a random disturbance that perturbs the nominal

laser output (during the ~h firfig) and ~k ( < 1) determines the attenuation due to the kth filter

that is used. The laser output, E. + 6f, is measured with relatively little error during each laser

firing. The attenuation factors, pk, are known for each filter. There are

(l)+(O+(;)+(!)=
98 possible filter combinations; each yields a unique overall attenuation

f~tor, k:4 pk.
—

Knowledge of the testing costs is an integral part of designing an economically efficient

experiment. We will discuss this only in relative terms here. Although the pellets are relatively

inexpensive, there is significant manpower expense in performing the test. There is relatively little

time and effort required to mount the heat pellet, prepare the laser, and to change filters.

However, if the pellet ignites, it is necessary and relatively expensive (with regard to time and

effort) to clean residue from the optical path of the test apparatus in order to prepare for the next

pellet. Therefore, it seems that a prudent experimental strategy should rely on extensive testing of

each of a relatively small number of pellets, rather than a modest amount of testing on each of a
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relatively large number of pellets.

3. EXPERIMENTAL STRATEGY

Part of the experimental design consists of selecting the filter combinations that span the

region of interest. From knowledge of E. and the attenuation factors, one can compute the

delivered energy that can be expected, EO. k ~ ~ kII p , by using various combinations of filters.

Fourteen of these filter combinations form a set that is well spread out and spans the region of

interest. The expected energy values (in Joules) corresponding to these 14 combinations of filters

{ }{
are given by R = RI, R2, . . .. R14 = .400, .450, .495, .555, .589, .620, .672, .707, .757, .802,

.845, .894, .957, 1.00}. Although we have limited the number of filter combinations to 14, we still

have a great deal of flexibility in specifying which of the 14 stimulus levels is to be used for a given

test.

The algorithm proposed to specify the stimulus level is a variation of the upand-down

method that utilizes the ability to retest a pellet if it doesn’t ignite. To generalize this for other

than 14 candidate stimulus levels, but for the situation of six potential firing attempts per pellet,

assume that there are L(even) >6 discrete expected stimulus levels possible. The specified

.th “th pellet is given by S?.stimulus level associated with the j test of the 1 Like the upand-down

method, this algorithm specifies that the i + 1 ‘t pellet is initially tested at a level, Si\l, dictated

by the results obtained from the i ‘h pellet. For subsequent tests of a pellet, the stimulus is

advanced one level at a time until the pellet ignites or all six sectors are tested. The proposed

algorithm used to specify stimulus levels, followed by a brief narrative, is given on the next page.



Algorithm Used to %ecifv Stimulus Levels

INIT: stind + ~+ 1;

i+();

NXTPEL: REPEAT UNTIL (i = n);

i+i+l;

j4-l;

stind + rein{ max{ stind – 3, 1}, L – 5}

Si + Ratind;

IF PELLET IGNITES THEN GO TO NXTPEL;

REPEAT UNTIL (j = 6);

j +j+l;

stind t stind + 1;

S; + Rstind;

IF PELLET IGNITES THEN GO TO NXTPEL;

end;

end;

Begin by testing one sector of the first pellet at stimulus level R;+l(the stimulus level index,

‘stind”, is ~+ 1). If L = 14, S; = .589 Joules. If the pellet does not fire, then advance the

stimulus one level and test the next sector of the pellet (i.e., “stind - stind + 1“ so that

S; = R%Z). Repeat this until the pellet ignites or until all six sectors of the pellet are used.

?General y, the initial testing level of a pellet, S:, is three levels lower than the highest level at

which the previous pellet was tested. This is meant to ceder the testing window about the point

at which the last pellet ignited. However, this rule is not hard and fast for two reasons. First,

testing cannot begin at a level below RI. Second, there is no benefit to beginning the test above

R9, as there are up to six possible stimulus levels that can be used. The logic %tind + min max{{

stind – 3, 1}, L – 5~ is used to handle these contingencies. Otherwise, the logic is very

straightforward and easy to use. Table 1 illustrates, with simulated test results, how the proposed

algorithm works.



Table 1- Proposed Algorithm Illustrated With Simulated Teat Results
I = Ignition N = No Ignition

Expected Energy Level (Joules)

Pellet .495 .555 .589 .620 .672 .707 .757 .802 .845

1
2
3
4
5
6
7
8
9
10

N N N N N I
I

N N I
N N N N N N

N N N N N I
N N N N I

I
N N N N N I

N N N N I
I

.

It is relatively straightforward to summarize these test results. For each pellet, the

threshold energy levels are either right, left, or interval censored. To simplify the discussion,

suppose that the nominal laser output is not disturbed (i.e. 6f = O). Then, by deduction, the

threshold energy level of the first pellet is censored in the interval [.757, .802] Joules. The

threshold energy associated with the second pellet is left-censored with a limit of .672 Joules. The

threshold energy associated with the fourth pellet is right-censored with a limit of .707 Joules. For

14 stimulus levels, one can list 31 possible outcomes (Of course the number of outcomes grows to

infinity when we let 6f vary randomly). Nine outcomes involve left-censored energy thresholds,

nine involve right-censored thresholds, and thirteen involve interval-censored thresholds. See Table

2 in Section 4 for an enumeration of those outcomes. The probability of each of these outcomes,

{ }
denoted by O = 01, 02, . . .. 031 , depends on p and u which will be estimated by maximum

likelihood. The efficiency of maximum likelihood estimation used in conjunction with the proposed

experimental strategy will be discussed in Sections 5 and 6. As a preliminary step, we will consider

some of the properties of the experimental strategy which, in one sense, can be represented as a

Markov Chain.

4. MARKOV CHAIN REPRESENTATION OF PROPOSED METHOD

To analyze the performance of the proposed method insofar as estimating p, and a, it is

useful to represent the process that arises from the proposed method as a Markov Chain. A

Markov Chain is a random process which at any stage is in one of a number of states, and which

advances to another state at the next stage with a probability that is dependent on the state of the

previous stage, but on no earlier stage (see e.g., Isaacson and Madsen, 1976). In the case of battery
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pellet testing, we will use this representation to obtain the probability of each of the 31 possible

outcomes (again, we will assume that 6f = O). The state of the process will be associated with the

initial stimulus that is applied to each pellet. Let Xi be the state of the process associated with

testing of the ith pellet. Xi c {1, 2, . . .9} indicates which of the nine permitted initial stimulus

levels {Rl, R2, . . .. .th pellet. For instance, if S; = .400 Joules, then Xi = 1.R9} is applied to the I

The transition probability, PJ,K = Prob{Xi+ ~ = K I Xi = J}, is the conditional probability that

the i+lst pellet will be initially tested at the RKth “‘h pellet wasstimulus level, given that the ~

‘h level.initially tested at the RJ

These transition probabilities depend on the model parameters, p and u, and will

henceforth be written aa Pj,K(p, u). For instance, P1,l(P, u) =
%55:-?

That is, we will

“‘h pellet ignited at an energy level at orbegin testing the i + 1 ‘t pellet at .400 Joules only if the :

S1 = R5 = .589 Joules).below .555 Joules. NOW suppose that Xi = 5 (i.e., i In this case, P5,1(P,

u) = O, as it is impossible to begin testing of a new pellet at more than three levels below where

testing began for the previous pellet. An example of a complete transition probability matrix is

P(.7, .1) =

.074

.074

.074

.074

0

0

0

0

0

.060

.060

.060

.060

.134

0

0

0

0

.866

.078

.078

.078

.078

.’212

0

0

0

0

.788

.178

.178

.178

.178

.390

0

0

0

0

.610

.138

.138

.138

.138

.528

0

0

0

0

.472

.188

.188

.188

.188

.716

0 0

0 0

0 0

0 0

.284 0

.130 .154

.130 .080

.130 .080

.130 .080

0

0

0

0

0

0

.074

.074

.074

The Markov Chain representation can be used to compute the stationary distribution

(large n) of the X-process which is given by

ll(p, a) is any row of W = ~qmP (p, u)’.

For example, we find that

17(.7, .1) = (.031, .051, .119, .216, .199, .218, .107, .047, .012).

U gives the long-term probabilities that the process is in each of the nine possible states.

Therefore, for example, when p = .7 and u = .1, the long-term probability that the process is

in the first state is about .031. Note that these long-term probabilities are independent of

where the process starts.
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D can then be used to describe the long-term distribution (large n) of the set of 31

possible outcomes. Todescribe this distribution, we will let

{
“th pellet yields outcome Om .Pm(Om; p, u) = !im Prob Testing of the 1

1+00 }
It is straightforward to show th~t

ql }pm(om; P, CT)= ~ flJ(14 a) opro Om X = J; p, ~ , where

~J(~, u) = is the long-term ~~o~ability of the process being in the Jth state and is the Jth

element of 17(p, u) and Pro
d }

Om IX = J; p, o is the probability that we observe outcome

Om given the process is in the Jth state. Table 2 gives the long-term distribution of the

outcomes for five combinations of p and u that are in the region of interest.

Table 2- Pm(Om; p, a) for selected values of p and u

ID Outcome /.l=.7 p=.6 p=.6 p=.8 p=.tl
a=.1 u= .05 0=.2 u=. 05 0=.2

01
02
03
04
05
06
07
08
09
0 10
0 11
0 12
0 13
014
0 15
0 16
0 17
0 18
0 19
0 20
0 21
0 22
0 23
0 24
0 25
0 26
0 27
0 28
0 29
0 30
0 31

Y <.400
Y ~ .450
Y <.495
Y <.555
Y s .589
Y ~ .620
Y ~ .672
Y <.707
Y ~ .757
Y >.620
Y >.672
Y >.707
Y >.757
Y >.802
Y >.845
Y >.894
Y >.957
Y >1.00
.400< Y <.450
.450< Y <.495
.495< Y <.555
.555< Y ~ .589
.589< Y ~ .620
.620< Y ~ .672
.672< Y <.707
.707< Y <.757
.757< Y <.802
.802< Y <.845
.845< Y <.894
.894< Y ~ .957
.957< Y <1.00

.0000

.0003

.0024

.0159

.0266

.0462

.0416

.0257

.0087

.0242

.0315

.0560

.0614

.0307

.0160

.0028

.0002

.0000

.0001

.0011

.0107

.0250

.0483

.1429

.1186

.1477

.0761

.0308

.0078

.0012

.0000

.0000

.0003

.0054

.0442

.0163

.0030

.0000

.0000

.0000

.0606

.0176

.0049

.0002

.0000

.0000

.0000

.0000

.0000

.0002

.0068

.1190

.2188

.2414

.2222

.0346

.0044

.0000

.0000

.0000

.0000

.0000

.0511

.0241

.0703

.0499

.0536

.0307

.0195

.0077

.0040

.1483

.0382

.0695

.0262

.0175

.0063

.0022

.0004

.0001

.0219

.0314

.0737

.0526

.0554

.0636

.0350

.0266

.0129

.0048

.0018

.0005

.0001

.0000

.0000

.0000

.0000

.0000

.0000

.0017

.0102

.0288

.0000

.0000

.0000

.0022

.0117

.0313

.0100

.0003

.0000

.0000

.0000

.0000

.0000

.0000

.0010

.0139

.1393

.3202

.2919

.1237

.0138

.0001

.0005

.0010

.0044

.0104

.0187

.0366

.0349

.0442

.0785

.0190

.0194

.0467

.0550

.0636

.0816

.0427

.0298

.0300

.0004

.0012

.0055

.0075

.0131

.0397

.0373

.0650

.0702

.0561

.0423

.0337

.0109



5. ASYMPTOTIC PERFORMANCE OF THE PROPOSED METHOD

The performance of the proposed method depends on the estimation procedure

that is used. Here, we will consider estimation of various percentiles of the response

curve by using linear combinations of the maximum likelihood estimators of p and a.

Maximum likelihood is often used to estimate location and scale parameters in problems

with censored data (see e.g., Nelson 1982, and Lawless 1982). There are a number of

computer codes that can produce maximum likelihood estimators from censored data

(see e.g., CENSOR authored by Meeker and Duke 1979, and PROC LIFEREG produced

by the SAS Institute 1988).

With relatively weak regularity conditions (which are met here), maximum

likelihood estimators are asymptotically (with respect to n) normally distributed (see

e.g., Serfling 1980). Specifically in the case of estimating U,

[5.1]

jln is the m.1.e. and IF(p) is the Fisher Information with respect to p. In our example,

where L(Om) is the log-likelihood that the threshold energy is consistent with the m th

outcome. For instance, L(O1) = log@{*}), L(OIO) = log(l - @{=}), and

L(O1g) .logp{*}-@{*}) are the log-likelihoods associated with certain

left-censored, right-censored, and interval-censored observations, respectively.

In order to describe the asymptotic performance of the method/estimator, one

1can evaluate *F(P) over the range of interest for p and u. Furthermore, one can easily

compute the asymptotic relative efficiency of the method/estimator with respect to the

maximum likelihood estimator based on complete data. By complete data, we mean

the actual threshold energy for every pellet tested is observed. The asymptotic relative

efficiency is then the ratio of the variance of ~, the sample mean of a complete data set,

to the variance of ji, and is given by A.R.E, (ji Ip, a) = U2I(p). Figure 4 shows

(roughly) how the A.R.E. of ~ varies over the region of interest. Figure 4 provides a

clear indication that the proposed method estimator is relatively efllcient for estimating

p. Note that, among those points considered in the {p, u} plane, the A.R.E. of & is

highest when p = .7 Joules and u = .05 Joules. This occurs because: 1. p = .7 Joules

splits the range of stimulus levels and, 2. u = .05 Joules is close to the typical step size

between successive stimulus levels. With regard to 1., as p moves away from .7 Joules,

the A.R.E of ji decreases because the likelihood of relatively noninformative single-

censored outcomes (either left or right censored) increases. With regard to 2., others

(e.g., Davis 1971) have found that the upand-down method is most efficient when

10



m % A (the step size). Note that the particular configuration of stimulus levels leads to

discontinuities and minor featurea in A.R.E. (ji Ip, u) that are not apparent in Figure 4.

(J = .20

iJ = .10

u = .05

u = .025

.76 .82 .80 .80 .75

.79 .90 .87 .90 .79

.78 .91 .92 .92 .78

.70 .76 .82 .78 .72

I I I I I

fl =.4 p = .55 p=.7 p=.85 p = 1.0

F@re 4- Asymptotic Relative Efficiency (A. R. E.) of ~ for Various Values of p and u

An analogous technique can be used to compute the asymptotic performance of

the method when the objective is to estimate an arbitrary percentile of the energy

threshold distribution with L + Zp ~, where Zp is the p‘h percentile of the standard

normal distribution. For arbitrary p, aa n + cm,

K (P + zp~ - @ + Zp”)) ~ Norma@7 ~) = n+~, where [5.2]

~ = (Zp, 1) (IF )-1 (zp, 1)=, and

lF=[~:::~::1, is the Fisher Information Matrix.

IF(o,c) = - Y pm(om; P, ~)82~’m),
m=l

IF(P,P) = - ~ pm(om; P, u)d2~~), and
m= 1

IF(P, u) =
d2 L(Om)

- flpm(om; P, ‘) ~pda o
m= 1

a2L(Om)82 L(Om) 82 ‘(em), and 8P da .
See the appendix regarding expressions for

~g2 ‘ @2

In the case of the battery heat pellets, the 90th percentile (P90), is of special interest to

the production engineers. Figure 5 shows how the A.R.E. of P90 = ~ + 1.28. ~ varies
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over the region of interest. In general, the A.R.E. of P90 decreases from low to high

values of p (especially for large values of a). The relatively poor asymptotic behavior of

P90 at p = 1 is due to the fact that the errors in ji and 6 are positively correlated when

p is near 1. In contrast, the errors in fi and 6 are negatively correlated when p is near .4

(A.R.E. is highest here). With regard to a, there is some indication that the A.R.E. of

this method/estimator is best when u is close to the typical difference between

successive stimulus levels ( = .05). In addition, there seems to be a localized area

(p = .4 and u = .025) where P50 (see Figure 4) and Pgo are somewhat inefilcient due to

the substantial likelihood of left censoring.

(7 = .20

u = .10

u = .05

u = .025

.72 .50 .42 .38 .25

.73 .65.86 .67 .33

.80 .88 .83 .82 .33

.52 .81 .67 .65 .30

1 I I I I 1

/.4=.4 /.L=.55 p=.7 p=.85 p = 1.0

F@re 5- Asymptotic Relative Efficiency (A. R. E.) of P90 for Various Values of p and u

6. MONTE CARLO SIMULATIONS

Although we have derived the asymptotic performance of the proposed method

when maximum likelihood is used to estimate p and a, it is of interest to characterize

the method’s performance for relatively small samples. A limited simulation study was

conducted for this purpose, with n = 20. The performance of the proposed method, over

various combinations of p and u, was examined (see Tables 3 and 4). RAN NOR (SAS

Institute 1988) was used to generate one hundred realizations of 20 random normal

variates for each combination of p and u that was considered. Note that if n is

relatively small, the efficiency of the method depends to a degree on where p is relative

to the initial position of the testing window. In the simulations discussed here, this

12



position was fixed at S~ = is R5 = .589 Joules (i.e., the initial stimulus applied to the

first of the 20 pellets in sample).

For each sample set, PROC LIFEREG (SAS Institute 1988) was used to

provide jl and & and an estimated covariance matrix for these parameter estimates.

Tables 3 and 4 summarize the 100 sample values of the estimated 50th and 90th

percentiles of the response curves (P50 = P and Pgo = ~ + 1.285) for each combination

of p and u that is given. In several instances (associated with small values of u), PROC

LIFEREG was unable to return estimates of p and a due to a heavy concentration of

results in one or two censoring intervals. In these cases, additional realizations were

performed so that 100 sample values of ~ and 6 were available for each combination of

p and u. The total number of realizations needed to provide 100 sample values of ji

and 8 (r*) is reported in Table 3. Note also that the conditions summarized in Tables 3

and 4 do not cover the complete range of parameters portrayed in Figures 4 and 5. In

many instances, with extreme p (.4 or 1.0) and small a (.025 or .05), PROC LIFEREG

was not able to return estimates of p and u due to the previously described problem.

This problem is further aggravated due to the preponderance of poor quality left(right)-

censored results (relative to interval-censored results) in these situations.

The accuracies of P50 and P90 can be assessed by comparing the column of

sample means in Tables 3 and 4 with the appropriate linear combination of p and u.

From these comparisons it is evident that P50 and P90 are reasonably accurate over the

various combinations of p and u considered here. The efilciencies of P50 and P90,

relative to those of the corresponding percentile estimates based on the known complete

data (~ and ~ + 1.280 S), are given by R.E. in Tables 3 and 4. In general, there is good

agreement bet ween the values of A.R.E. (from Figures 4 and 5) and the sample values

of R.E. With n = 20 and for extreme values of p (.4 and 1.0), the A.R.E. is an

optimistic predictor of the sample R. E., due in part to the distance from p to the initial

testing window.



Table 3- Summary of Simulation Ikulta for P50 by p and a

A.RE. = asymptotic efllciency of P50 relative to ~ with complete data

RE. = sample efficiency of P50 relative to x with complete data

r*= number of realizations needed to provide 100 sample values of P50

P u Sample Sample A.RE. R.E. r*

Mean std.Dev.

.40

.40

.55

.55

.55

.55

.70

.70

.70

.70

.85

.85

.85

.85
1.00
1.00

P

.1

.2

.025

.05

.1

.2

.025

.05

.1

.2

.025

.05

.1

.2

.1

.2

.394

.389

.550

.549

.551

.546

.700

.701

.702

.696

.849

.851

.847

.853
1.003
1.013

.036

.069

.0057

.0113

.023

.060

.0060

.0106

.022

.046

.0065

.0110

.025

.059

.028

.072

.79

.76

.76

.91

.90

.82

.82

.92

.87

.80

.78

.92

.90

.80

.79

.75

.42

.50

.69

.84

.91

.58

.80

.98

.85

.93

.77

.89

.76

.51

.59

.34

100
100
104
102
100
100
100
102
100
100
104
100
100
100
103
100

Table 4- Summary of Siulation Reaulta for P90 by p and u

A.RE. = Wymptotic efficiency of P90 relative to ~ with complete data

RE. = sample efilciency of P90 relative to ~ with complete data

u ’90 Sample Sample A.RE. RE.
Mean std.Dew.

.40

.40

.55

.55

.55

.55

.70

.70

.70

.70

.85

.85

.85

.85
1.00
1.00

.1

.2

.025

.05

.1

.2

.025

.05

.1

.2

.025

.05

.1

.2

.1

.2

.528

.656

.582

.614

.678

.806

.732

.764

.828

.956

.882

.914

.978
1.106
1.128
1.256

.522

.646

.579

.609

.677

.809

.731

.762

.828

.943

.876

.912

.976
1.108
1.128
1.288

.033

.077

.0097

.0141

.036

.028

.0094

.0147

.037

.107

.0142

.0157

.041

.117

.058

.188

.86

.72

.81

.88

.73

.50

.67

.83

.65

.42

.65

.82

.67

.38

.33

.25

.79

.60

.59

.94

.80

.53

.61

.99

.53

.35

.29

.84

.58

.31

.25

.11
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The estimated covariance matrix of (P, 6), provided by PROC LIFEREG, can be used

to develop approximate confidence intervals for p50 and p90. For example, an

approximate central confidence interval for P50 with coverage (l-~) is given by

Similarly, an

The quality

distributions

,“IF=P50* z~ [6.1]

approximate confidence interval for Pgo with coverage (l-~) is given by

P90+ z~ . Var (ji) + (1.28)2. V&r (5) + 201.28. C&(j2, 6). [6.2]
5

of these confidence intervals can be evaluated by considering the

’90 – ’90 for the various simulation

‘f ’50= m and “0= -

conditions considered. Figures 6 and 7 display summaries of these distributions.

From Figure 6, it is apparent that eqn. 6.1 provides useful confidence intervals

for P50 for levels of a at least as small as .2 (i.e., the 10th and 90th percentiles of A50

are consistent with 0-1 (.1) and 0-1(.9), respectively. However, in the case of Ago (see

Figure 7), it is apparent that eqn. 6.2 provides confidence intervals with poorer quality

than those produced by eqn. 6.1. In general, the distributions of A90 are skewed

significantly to the left. This is due to the non-normal, asymmetric nature of the

distribution of 5 which causes the distribution of P90 to deviate from normality. In

general, the result is that lower a-level confidence limits for P90, constructed via eqn

6.2, will be conservative, while upper cr-level confidence limits for Pgo will be

anticonservative (i.e., Prob@90 ~ P90 + 0-1(.90) -~-} z .1). Note that this

problem will be exacerbated when constructing confidence intervals for more extreme

percentiles when using the approach illustrated by eqn. 6.2. Thus, with regard to

evaluating production lots of heat pellets, lot acceptance based on a-level upper

confidence limits for Pgo will result in consumer’s risk that is somewhat larger than a.

In summary, the estimates of P50 and P90 using the proposed

method/estimator were shown to be both accurate and relatively efficient for samples of

size n = 20. Furthermore, useful confidence regions for P50 and p90 can be obtained by

using eqn.’s 6.1 and 6.2 in conjunction with the asymptotic covariance estimates of ~

and 6 provided by PROC LIFEREG.
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7. CONCLUSION

A simple strategy for evaluating the ignition sensitivity of thermal battery heat

pellets has been proposed. The strategy has been shown (both asymptotically and

through simulation) to be relatively eftlcient in terms of the number of pellets to be

tested. The high efficiency of the proposed method seems to be at odds with the fact

that the data are incomplete. The bssis for the relatively good efllciency of this strategy

is the conversion of relatively uninformative left(right)-censored outcomes to interval-

censored outcomes. One could, in principal, improve this method by using intermediate

estimates of p and u to set the conditions of subsequent testing. However, due to the

relatively good ei%ciency of the proposed method, the efficiency gain would be minimal,

at best.
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a%(om) z~(om), ~d ~Wm)-
APPENDIX - Expression. for am~a ,

L@@ ap au

82L(%)= 1

{

Z; #(Zu) – 2:#(zL) + 2{ZU#(zU)‘zL#(zL)} {zU@(zU)-zL@(zL)~

&2 ~
—

‘(ZIJ) – ‘(zL) }@zIJ)-@(z$ “

{

{+(Z(J)+(Z$82L(Om) _ 1 +’(zu) – #’(zL) _
8P 2 – ~ @(Zu) – @(zL)

@z@(zL)~

82J-(%)_ I

{

Z@’(Zu) – z#(zL) + 4(ZU)– ~(ZL) _ (d(zu) ‘@(ZL))(ZU$Xzu) -zL#(zL))

8/J&7 –~ ‘(zu) – ‘(zL) }{@(zU)-@(zL)~ “

Zu (zL) defines the upper (lower) censoring limit in terms of a standard normal variable,

4(. ) is the standard normal density function, and @(. ) is the standard normal

cumulative distribution function. For left-censored outcomes, zL = —CO. For right-

censored outcomes, ZR = + 00. Note that @(–w)=O, @(+oo)=l, ~(–ccI)=O,

#(+co)=O, #(–m)=O, and#(-tm)=O.
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’50 – ’50 for the various simulation conditionsFigure 6- Distributions of A50 =

m

indexed by p E {.4, .55, .7, .85, 1.0} and u E {.025 (A), .05 (B), .1 (C), .2 (D)}. In

addition to the minimum and maximum (when offscale denoted by a broken line), the

10th 25th, 50th, 75th, and 90th percentiles are displayed. Horizontal broken lines are7

displayed at the following levels: O-l(.lO) = -1.28, 0-1(.25) = -.674, 0, 0-1(.75) = .674,

0-1(.90) = 1.28.
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indexed by p c {.4, .55, .7, .85, 1.0} and u ~ {.025 (A), .05 (B), .1 (C), .2 (D)}.
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